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On the Zeros of Sequences of Polynomials
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In this paper we generalize a result of Blatt, Saff, and Simkani on the limit
distribution of zeros of sequences of polynomials. In a typical application these
polynomials converge on a compact subset F of the complex planc. The highest
coefficient of the polynomials plays an important role in the theorem of Blatt, Saff,
and Simkani. In this paper we replace the behavior of the highest coefficient by the
behavior of the sequence on some compact set in & £. Furthermore we show how
this generalization can be applied to sequences of maximally convergent polynomials.
T 1990 Academic Press, Inc.

1. INTRODUCTION AND STATEMENT OF RESULTS

Throughout this paper, E will be a compact subset of C, the complex
plane, such that C\ E'is connected and regular, i.c., there is a Green’s function
G on C\ E with pole at oc:

G(z) is barmonic in C\ E, (L1
G(z)—1log |z} i1s harmonic at o, {1.2)
lim G(z)=0. (1.3)
P CE
Then
_li}nx (G(z) —log |zj)= —logcap £, {1.4)

where cap E is the capacity of E (compare [6]). If we denote by u, the
equilibrium measure of E and by U*# its logarithmic potential, then

G(z)= —U*r(z)—logcap E

B 1 -
= —[i log pr dub-(i)]~10gcapli {1.5)
< T lz=4 i
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(compare [6]). We set C:=C v {0 }. Furthermore, we will assume that
(p,) is a sequence of complex polynomials, such that p, € IT,,(C) and k(n)
is the exact degree of p,. Defining the zero-measure v, associated with p,
as

v (4) = # of zeros of p,,in A

degree p, for A=C, (1.6)

where the zeros are counted with their multiplicity, we establish the following
theorem.

THEOREM 1. Assume the following conditions hold:
(1)
lim su (su —1—10 | ()|><0 (1.7)
roe \ep k() 8PS |

(2) For every compact M < E®, where E° denotes the open interior
of E,

lim v,(M)=0. (1.8)

”—> 0

(3) There is a compact set K< C\E with

lim inf [sup <E(ln_) log | p.(z)] — G(z))] =0. (1.9)

n— o0 zeK

Then
Vv, > lhg (1.10)

weakly for n— 0.

Weak convergence is equivalent to

lim f¢dv,,=j & du; (1.11)

n— 0

for all continuous ¢ with compact support.

The proof of Theorem 1 is contained in Section 2. Of course, (1) and (2)
are satisfied, if the sequence (p,) converges uniformly on E to a function,
which does not vanish on any connected open component of E°. If (3)
holds, we call G(z) an exact harmonic majorant of 1/k(n) log | p,(z}| on K
(compare [8,9]).
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Remark 1. 1f we define

() :=E(1;1—) log | pu(2)| - G(2), (L.12)

then #,(z) is subharmonic in C\E and harmonic in oo. By the maximum
principle for subharmonic functions and (1.7), we have equality in (1.7}
and (1.9). Furthermore, “lim inf” and “lim sup” can both be replaced by
“lim.” We show now, that lim,, _, , k(n) = co. For otherwise, the polynomials

have a limit point p, which has no zeros in E° by (1.8) and no zeros in
C\E° by (1.9), a contradiction.

Remark 2. Theorem 1 remains true, if we replace k(n) = degree of p, by
some sequence k(n) > k(n) throughout Theorem 1. To see this, assume (1.7}
and (1.9) hold with k() replaced by k(n). Then, by the maximum principie
for subharmonic functions,

——log | p,(2)] — G(2)

k( )

zi(—l“)“"g p (z)l-k(n)G(z)H(? M)y )G(z)
1 {n} .
<— 1 -1 13
<k(n) u;; og lpn(Z)l+< (1.13)

for all ze K. Thus, by (1.7) and (1.9),

0<lim 1nf(li(—@—l> inf G(z), {1.14)
n-w k(n) zeK ’

from which lim, _, ., k(n)/k(n) =1 follows. Therefore, (1.7) and (1.9) hold
for the sequence k(n) too.

With K= {0}, we get the theorem of Blatt, Saff, and Simkani [17 for
regular sets E.

CoroLLARY 1 (Blatt, Saff, Simkani). Let g,=2z"+ --- be a sequence of
monic polynomials of degree n, such that

lim inf ||g, | ¥" <cap E, (1.15)
where || -|| denotes the sup-norm on E. Assume that q, has only o(n) zeros in

every compact set M < E° for n-> co. Then the zero-measures v, associated
to the q, have u, as a weak limit point.
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Proof. Define

1
Pule) = ey 402) (116)
Then
lim inf 4,(c0)=0, (1.17)

Thus, for a subsequence, (1.7) and (1.9) hold with K = {0 }. Equation (1.8)
holds by assumption. The result follows from Theorem 1.

Corollary 1 can be applied, whenever the highest coefficient of the
sequence (p,) is known. This includes the case where the sequence of
polynomials is the truncated power series of a function. Then FE is the circle
of convergence. Truncated power series have been investigated by Jentzsch
[4] and Szegd [5]. Szegd obtained the distribution result in Corollary 1.
Further quantitative investigations have been done by FErdds and
Turan [2].

A special instance of Corollary 1 is the sequence of best uniform
approximants on £ to a function f, which is continuous on E, analytic in
E° and does not vanish on any connected open component of E°
(see [1]).

The advantage of Theorem 1 lies in the fact that it does not mention the
highest coefficient. An application is a sequence of maximally convergent
polynomials. The following definition was used by Walsh [8].

DrerinmTION 1. Define, for y 2 1,
E, :={zeC\E: G(z)<logy} UE, (1.18)

and assume that, for some y>1 the function f: E— C has an analytic
extension on Ej, for all § <y, but not on E,. (By an extension on a compact
sct we mean an extension on a open neighborhood of that set.) Then a
sequence of polynomials p, € I, is called maximally convergent to f, if

. 1
lim sup “f'_pn”}E/"S;' (1.19)

n—

3 2

Note that we cannot have “<
generalized Bernstein inequality,

in (1.19), since otherwise by the

loull &, <7"1 Pl &5 (1.20)

P converges on some E;, §>7 (for this argument see [8]).
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COROLLARY 2. Assume f has an analytic extension on E. for all § <7y but
not on E., y>1. Let p, converge maximally to f, as defined in Definiton 1.
Assume that f does not vanish on any closed connected component of E. Then
the zero-measures v,, associated to the p, have y, (the equilibrium measure
of E.) as a weak limit point. ‘

Proof. We apply Theorem 1 with E replaced by E = E,. By (1.19) and
the generalized Bernstein inequality, we have

I~

~
lim sup |pn~—pn X|' ‘;"g.

n— u

~

for all 1<7 <7y Thus the sequence (p,) converges on £, for all 7<7.
Appiving (1.20) once more we get

limsup ip, 13" <1 (1.22)
Thus we have (1.7). Since the sequence (p,) converges on any compact sct
M < E°, we get (1.8). Let K be any connected compact set K< £ E, such
that ¢K is regular, and assume

. ’ 1 ~ 1 .
lim sup Lsup (— log | p.(2)] — G(:))J =4 <0, {123
n— ek \1

where G(z)=G(z)—log~ denotes the Green’s function of C\E. Define a
harmonic function g on C\(£ v K), which tends to 0 on ¢F and to J on
¢K. By the maximum principle for subharmonic functions and (1.21),

: 1 .
lim sup - log |p(2)—p,, (2) —G(z)< g(z)—logy (1.24)

n—

for all ze C\(EuU K) and ne N. Thus

limsup | p,— poy i 2" < 1. (1.25)
This implies
Uimsup [ p, —p,. i s <1, (1.26)

for some >3y, using (1.20) for E. It follows that the sequence {p,)
converges in £;, which is impossible. Thus we have (1.9). Corollary 2 now
follows from Theorem 1 and Remark 2. *

We remark here that Walsh investigated the zeros of maximally
convergent sequences of polynomials [9]. He proved that every point on
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the boundary of E, is a limit point of such zeros, which is a consequence
of Corollary 2.

We have very little information on the distribution of the zeros, if (p,,)
is a sequence of “near best approximations” to a function f, which is not
analytic on E (see [3]). However, Simkani [7] proved a result on sequences
of interpolants in the roots of unity, where E is the unit circle.

2. PrROOF OF THEOREM 1
Let K be a compact set in €, such that 6K is regular, K< C\(E U K) and

C\(EUK) is connected. Then (1.9) holds with K replaced by K. For
otherwise, there is a harmonic function ¢ on C\(Eu K), such that

#()=0 for tedE
o > (2.1)
¢(t)=lim inf [sup k,(z)] <0 for zedk.
n-> 0 ze i{'
Thus, by the maximum principle for subharmonic functions,
lim inf[sup £,(z)] < lim inf [sup ¢(z)] <0, 2.2)

n—oc0 zek n— o0 ze kX

which contradicts (1.9).
Now we show that in any compact set S< C\E there are only o(k(n))
zeros of p,,. We may assume K S = . With (1.12) let us define, for ne N,

ha(z)= MZHH—) Y. Gz 2,.), (23)

where z, , are the zeros of p, in S, and G(z, w) denotes the Green’s function
on C\E with pole in w. Then %, is subharmonic in C\E. Thus, by the
maximum principle for subharmonic functions,

lim sup (sup %,(z)) <0, (24)

"= ze K

where we used (1.7). Since 7, > h, on T\ E, we get from (1.9)

lim (1nf (A, —h,)(z))=0. (2.5)
Let
inf -inf G(z, w)=0>0. (2.6)

zeK we S
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(We have 6> 0, since G(z, w) is continuous in (z, w), z# w). Then from
(2.5)

) ) 1 .
0= tim (1ot 77 E Gtz
> lim sup(d - v,(S)). (2.7}
Thus
lim v, (S)=0, (2.8}

which implies that there are only o(k(n)) zeros in S.

Since (v,) is a sequence of unit measures on the Borel sets of T, every
subscquence of (v,) possesses a weak limit point. Let v be the weak limit
of the subsequence (v,,,,). It remains to show that v=p,.

Let z,e C\E and U= SuV the union of a circle § around z, and a
neighborhood V of infinity, such that U< C\E and C\(Eu U) is connec-
ted. Then (1.9) holds with K replaced by S. Decompose p,=p, -¢,, such
that

m{a)

qn(z) - an . l—l (Z - z\xn)’ (29)
v=1

where z,,, v=1, .., m(n), are the zeros of p, in U and g, is the highest
coefficient of p,,.

Fix £¢> 0. Take R, >0, such that |z| = R, implies z € V. By the maximum
principle for subharmonic functions, (1.7) and {2.8),

e>h,(z)

! - YRR .
zk_(n—) log | 5,(2)l _(’(~)+k(n) log |g,(2)l

1
> ap E—e¢+——log ig.(z)],
log cap a+k(n) og {g.(z),

for [zj=R,> Ry, and n= N, where R, and N, are chosen large enough. By
the maximum principle applied to ¢,(z),

1
lim sup <sup o log \q,,(z)!) < —logcap F. (2.10)
ze S (n)

"o L
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Let ¥, denote the zero-measure associated with p,. Then, by (2.8), v is
a weak limit point of ¥,,,. Thus, for all ze S°,

lim U"(z)= — lim fwlog |2 L] d9(0)

n~— o n-— o

—|[ log 12— ] dv({)
=U(2). (2.11)

Let §< S° be a compact neighborhood of zo, such that 45 is regular. Then
the convergence in (2.11) is uniform in S. Furthermore, (1.9) holds for §
too. Let ¢ > 0. Then there is an Ne N, such that for n= N

m log |g,(z)| < —logcap E+¢  forall zeS (212)

sup

1
S<m log | p.(2)l —G(z)>> —& (2.13)

where we used (2.10), (1.9), and m(n)/k(n) — 0. Thus, for n= N,

inf U(z) = inf —

ze8 ze§ k(}’l)—m(n) lOg Iﬁn(z)l

<sup (—log cap E—G(z) + 2¢)

ze S

= sup U"(z) + 2. (2.14)

ZES

By (2.11) and the uniform convergence in S, we can deduce
U¥(z) < U*(z) for zeC\E, (2.15)
since S and ¢ >0 was arbitrary. Since (U* — U*)(0)=0, we get

U’(z)=U*5(z) for all zeC\E. (2.16)
Now we reproduce an argument in [1]. Denote by
Ip]= | U*(z) du (217)

the energy of the measure u. Then py is the unique measure, supported
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on CE, which minimizes [[¢] (compare [6]). Since U'* is lower semi-
continuous on ¢F, we get

U'(2)< U*(z) for ze@FE. (2.18)

Since v is supported on JF,

Ivi={ vrav<| Usedv=1I[p,] (2.19)

Thus v =y and the proof of Theorem 1 is complete.
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