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On the Zeros of Sequences of Polynomials
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In this paper we generalize a result of Blatt, SaIT, and Simkani on the limit
distribution of zeros of sequences of polynomials. In a typical application these
polynomials converge on a compact subset E of the complex plane. The highest
coefficient of the polynomials plays an important role in the theorcm of Blatt, Saff,
and Simkani. In this paper we replace the behavior of the highest coefficient by the
beha~'ior of the sequence on some compact set in C\E. Furthermore we show how
this generalization can be applied to sequences of maximally convergent polynomials.
'(: 1990 Acadt:mic Press, Inc.

I. INTRODUCTIOK AND STATEMENT OF RESULTS

Throughout this paper, E will be a compact subset of C, the complex
plane, such that C\Eis connected and regular, i.e., there is a Green's function
G on C\ E with pole at Cf):

Then

G(z) is harmonic in C.E,

G(z) -log Izi is harmonic at x,

lim G(z) =0.
Z --+ (:£

lim (G(z) -log Izl) = -log cap E,

(1.1 )

(1.2)

(1.3)

(1.4 )

where cap E is the capacity of E (compare [6]). If we denote by /1 F the
equilibrium measure of E and by Ul'f. its logarithmic potential, then

G(z)= -UI'£(z)-logcap E

= - rrlog _I_y , dpd()l-log cap E
"' IZ-si J
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(1.5)
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(compare [6]). We set iC := C U {oo}. Furthermore, we will assume that
(Pn) is a sequence of complex polynomials, such that Pn E lIk(n)(C) and k(n)
is the exact degree of Pn. Defining the zero-measure Vn associated with Pn
as

vn(A);= # of zeros ofpn in A
degree Pn

for A sC, (1.6)

where the zeros are counted with their multiplicity, we establish the following
theorem.

THEOREM 1. Assume the following conditions hold:

(1 )

lim sup (sup k(1 ) log IPn(Z)I) ~ o.
n-+ 00 ZEE n

(1.7)

(2) For every compact MsEo, where EO denotes the open interior
ofE,

lim vn(M) = O.
n -> 00

(3) There is a compact set Ks iC\E with

lim inf[sup (/ ) log IPn(Z)I-G(z))J~o.
n-+ 00 ZEK (n

Then

weakly for n~ 00.

Weak convergence is equivalent to

(1.8)

(1.9)

(1.10)

(1.11)

for all continuous ¢J with compact support.

The proof of Theorem 1 is contained in Section 2. Of course, (1) and (2)
are satisfied, if the sequence (Pn) converges uniformly on E to a function,
which does not vanish on any connected open component of EO. If (3)
holds, we call G(z) an exact harmonic majorant of 1/k(n) log IPn(z)1 on K
(compare [8,9J).
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Remark 1. If we define

1
hn(z) := ken) log IPn(z)l- G(z),

353

(1.12)

then hn(z) is subharmonic in iC\E and harmonic in 00. By the maximum
principle for subharmonic functions and (1.7), we have equality in (1.7)
and (1.9). Furthermore, "lim inf" and "lim sup" can both be replaced by
"lim." We show now, that limn --> 00 k(n) = 00. For otherwise, the polynomials
have a limit point P, which has no zeros in EO by (1.8) and no zeros in
iC\EO by (1.9), a contradiction.

Remark 2. Theorem 1 remains true, if we replace k(n) = degree of Pn by
some sequence ken) ~k(n) throughout Theorem 1. To see this, assume (1.7)
and (1.9) hold with ken) replaced by ken). Then, by the maximum principle
for subharmonic functions,

1
;:-log IPn(z)l- G(z)
ken)

=~ (log IPn(z)l- ken) G(z)) +(~(n) - 1) G(z)
ken) ken)

~~ sup log IPn(z)1 + (~(n) -1) G(z)
ken) ZEoE ken)

for all zEK. Thus, by (1.7) and (1.9),

O~1im inf(~(n) -1) inf G(z),
n-->oo ken) OEK

( 13)

(1.14)

from which limn --> 00 k(n)jk(n) = 1 follows. Therefore, (1.7) and (1.9) hold
for the sequence k(n) too.

With K = {co }, we get the theorem of Blatt, Saff, and Simkani [1] for
regular sets E.

COROLLARY 1 (Blatt, Saff, Simkani). Let qn= zn + ... be a sequence of
monic polynomials of degree n, such that

lim inf II qn II ~n ~ cap E,
n_oo

(1.15 )

where 11·11 denotes the sup-norm on E. Assume that qn has only o(n) zeros in
every compact set M S; EO for n ~ 00. Then the zero-measures Vn associated
to the qn have flE as a weak limit point.
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Proof Define

Then
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lim inf hn ( CIJ )= 0,
n---> 00

(1.16)

(1.17)

Thus, for a subsequence, (1.7) and (1.9) hold with K = {CIJ}. Equation (1.8)
holds by assumption. The result follows from Theorem 1. I

Corollary 1 can be applied, whenever the highest coefficient of the
sequence (Pn) is known. This includes the case where the sequence of
polynomials is the truncated power series of a function. Then E is the circle
of convergence. Truncated power series have been investigated by Jentzsch
[4J and Szego [5]. Szego obtained the distribution result in Corollary 1.
Further quantitative investigations have been done by Erdos and
Tunin [2].

A special instance of Corollary 1 is the sequence of best uniform
approximants on E to a function 1, which is continuous on E, analytic in
EO and does not vanish on any connected open component of EO
(see [1J).

The advantage of Theorem 1 lies in the fact that it does not mention the
highest coefficient. An application is a sequence of maximally convergent
polynomials. The following definition was used by Walsh [8].

DEFINITION 1. Define, for y?: 1,

Ey := {z E C\E: G(z):;:;; log y} u E, (1.18)

and assume that, for some y > 1 the function I: E ~ C has an analytic
extension on Ey , for all y< y, but not on E y • (By an extension on a compact
set we mean an extension on a open neighborhood of that set.) Then a
sequence of polynomials Pn E Iln is called maximally convergent to J, if

lim sup 11/- Pnll~t :;:;;!.
n~ 00 Y

(1.19)

Note that we cannot have "<" in (1.19), since otherwise by the
generalized Bernstein inequality,

II Pn II Ey :;:;; yn II Pn II E'

Pn converges on some Ey, y> y (for this argument see [8 J).

(1.20)
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COROLLARY 2. Assume f has an analytic extension on Ejor all~' <")' hut
not on E.i , i' > 1. Let p" converge maximally to /; as defined in Definiton l.
Assume that I does not vanish on any closed connected component of E. Then
the zero-measures I'll associated to the P" have J1.lo (the equilibrium measure
of E.) as a weak limit point. .

Proof We apply Theorem 1 with E replaced by £:= E"I' By (1.19) and
the generalized Bernstein inequality, we have

lim sup! Pn - P", J Ii ~/" ~ ~
n - ~.J: '. }'

(1.21 J

for all 1~ Y< (. Thus the sequence (Pn) converges on E; for all ;"7 < y.
Applying (1.20) once more we get

lim sup:, P" !k'" :s 1.
11 .• x:

( 1.22)

Thus we have (1.7). Since the sequence (Pn) converges on any compact set
Ms £0, we get (1.8). Let K be any connected compact set Ks C\E, such
that iJK is regular, and assume

lim s.u p r- sup (~ log Ip,,(z)1 - (i(z ))J = J < 0,
I1-X L:EK n

(123)

where G(z) = G(z) - log~' denotes the Green's function of C \ E. Define a
harmonic function g on C\(EuK), which tends to 0 on cE and to () on
?K. By the maximum principle for subharmonic functions and (1.21),

1
lim sup -log Ip,,(z) --- P" + 1(z)1 - G(z) ~ g(z) -log (

n _ J. n

for all zEf:\(EuK) and nEN. Thus

I· II " Ii" 1lmsup P,,-P,,+li-l; < .

This implies

lim sup I!p" - P,,+ li!i:;n < 1,
n • ::f~

(1.24)

(1.25 )

(1.26 )

for some ; > y, using (1.20) for E. It follows that the sequence (p,,)
converges in E y, which is impossible. Thus we have (1.9). Corollary 2 now
follows from Theorem 1 and Remark 2. •

We remark here that Walsh investigated the zeros of maximally
convergent sequences of polynomials [9]. He proved that every point on
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the boundary of E y is a limit point of such zeros, which is a consequence
of Corollary 2.

We have very little information on the distribution of the zeros, if (Pn)
is a sequence of "near best approximations" to a function f, which is not
analytic on E (see [3]). However, Simkani [7] proved a result on sequences
of interpolants in the roots of unity, where E is the unit circle.

2. PROOF OF THEOREM 1

Let Kbe a compact set in C, such that oK is regular, KsC\(EuK) and
C\(Eu K) is connected. Then (1.9) holds with K replaced by K. For
otherwise, there is a harmonic function ¢J on C\ (E uK), such that

~(t) =°
~(t) = lim inf [sup hn(z)] <°

n~ 00 zeK

for tEoE

for tEaK.
(2.1 )

Thus, by the maximum principle for subharmonic functions,

lim inf[sup hn(z)] <lim inf[sup ifi(z)] <0, (2.2)
n~oo ZEK n-",oo ZEK

which contradicts (1.9).
Now we show that in any compact set Ss C\E there are only o(k(n»

zeros of Pn- We may assume K n S = 0. With (1.12) let us define, for n EN,

(2.3)

where zvn are the zeros of Pn in S, and G(z, w) denotes the Green's function
on C\i with pole in w. Then hn is subharmonic in C\E. Thus, by the
maximum principle for subharmonic functions,

lim sup (sup hn(z)) < 0,

where we used (1.7). Since hn ?; hn on C\E, we get from (1.9)

lim (inf (hn- hn)(z)) = O.
n~oo zeK

Let

inf inf G(z, w) = J > O.
ZEK weS

(2.4 )

(2.5)

(2.6)
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(We have <5 > 0, since G(z, w) is continuous in (z, w), z =P Ii). Then from
(2.5)

0= lim (inf k(1 ) I G(z, Z"" I)
11 _.~:x:; =€-: K n v

Thus

~ lim sup(b· vll(S)).

lim vll(S) = 0,
fl·-+ .r,

(2.7)

(2.8)

which implies that there are only o(k(n)) zeros in S.
Since (I'll) is a sequence of unit measures on the Borel sets of 'C, every

subsequence of (I'll) possesses a weak limit point. Let v be the weak jimit
of the subsequence (1'/(,,)). It remains to show that 1'= /ll:'

Let zoEC\E and U=Su V the union of a circle S around 20 and a
neighborhood V of infinity, such that U £ C\E and C\(E u U) is connec­
ted. Then (1.9) holds with K replaced by S. Decompose Pn = Pn • q11' such
that

m(ll)
qn(z)=an · n (2-2".11)'

\ = 1

(29)

where Z,.Il' v = I, ..., m(n), are the zeros of Pil in U and an is the highest
coefficient of Pn .

fix I:: > O. Take Ro> 0, such that Izi ~ Ro implies Z E V. By the maximum
principle for subharmonic functions, (l.7) and (2.8),

c> hll(z)

1 _ , 1
= k(n) log Ipll(z)!-(I(zl+k(;i log Iqn(z)1

1
~logcap E-c+ k(n) log iqn(z)l,

for 121 = R, > Ro and n ~ N., where R, and No are chosen large enough. By
the maximum principle applied to qn(z),

lim sup (sup J!- log IQn(Z)!) ~ -log cap E. (2.10)
11'% Z("s(n)
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Let vn denote the zero-measure associated with fin- Then, by (2.8), v is
a weak limit point of v/(n)' Thus, for all z E So,

lim UV/ln)(z) = -lim flOg Iz-(I dV/(n/O
n.-.--+ 00 n"'-'HX) C\U

= -f log Iz-(1 dv(O

= UV(z). (2.11)

Let Ss So be a compact neighborhood of Zo, such that as is regular. Then
the convergence in (2.11) is uniform in S. Furthermore, (1.9) holds for S
too. Let a> O. Then there is an N E N, such that for n ~ N

1
----log Iqn(z)l,,:; -log cap E+a for all ZES (2.12)
k(n)-m(n)

~~~ (k(n) ~ m(n) log IPn(z)l- G(Z») ~ -a, (2.13)

where we used (2.10), (1.9), and m(n)/k(n)~O. Thus, for n~N,

_ 1
!~~ UVn(z) = !~~-k(n)-m(n) log IPn(z)j

,,:; sup ( -log cap E - G(z) +28 )
ZE S

= sup U?lE(Z) + 2a.
ZES

By (2.11) and the uniform convergence in S, we can deduce

(2.14 )

UV(z),,:; U?lE(Z) for ZE C\E, (2.15)

since S and a> 0 was arbitrary. Since (UV - U?lE)( (0) = 0, we get

UV(z) = U?lE(Z) for all z E C\E. (2.16 )

Now we reproduce an argument in [1]. Denote by

I[,u] = f U?l(z) d,u (2.17 )

the energy of the measure ,u. Then ,uE is the unique measure, supported
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on cE, which minimizes l[/l] (compare [6]). Since C" is lower seml­
continuous on DE, we get

U"(z) ~ Ul't(z)

Since v is supported on GE,

for Z E aE. (2.18 )

l[v]= r U"dv~ r U"£dv=l[pJ:].
oJ J

Thus v = f1E and the proof of Theorem I is complete.
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